186 research outputs found

    Harnessing Omic Approaches to Understand How Carbon, Nitrogen, and Sulfur Cycling are Partitioned in Deep Sea and Sediment Microbial Communities.

    Full text link
    Microorganisms have mediated the cycling of elements on Earth for billions of years. However, the majority of microbes present in nature are uncultured and we know little about their physiologies or how geochemical niches are partitioned in nature. Innovations in DNA sequencing technologies and computational analyses now allow us to reconstruct genomes of individual community members from environmental samples. This process, referred to as “metagenomics”, enables elucidation of metabolic pathways of microbes without having to culture them. Furthermore, in situ gene activity can be measured by sequencing community RNA, referred to as “metatranscriptomics”. This dissertation uses these revolutionary approaches to investigate two biogeochemical hot spots in the oceans: deep-sea hydrothermal vent plumes and estuarine sediments.PHDGeologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110438/1/archaea_1.pd

    Establishing a marine monitoring programme to assess antibiotic resistance: a case study from the Gulf Cooperation Council (GCC) region

    Get PDF
    The World Health Organization considers antimicrobial resistance as one of the most pressing global issues which poses a fundamental threat to human health, development, and security. Due to demographic and environmental factors, the marine environment of the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of antimicrobial resistance. However, there is currently little information on the presence of AMR in the GCC marine environment to inform the design of appropriate targeted surveillance activities. The objective of this study was to develop, implement and conduct a rapid regional baseline monitoring survey of the presence of AMR in the GCC marine environment, through the analysis of seawater collected from high-risk areas across four GCC states: (Bahrain, Oman, Kuwait, and the United Arab Emirates). 560 Escherichia coli strains were analysed as part of this monitoring programme between December 2018 and May 2019. Multi-drug resistance (resistance to three or more structural classes of antimicrobials) was observed in 32.5% of tested isolates. High levels of reduced susceptibility to ampicillin (29.6%), nalidixic acid (27.9%), tetracycline (27.5%), sulfamethoxazole (22.5%) and trimethoprim (22.5%) were observed. Reduced susceptibility to the high priority critically important antimicrobials: azithromycin (9.3%), ceftazidime (12.7%), cefotaxime (12.7%), ciprofloxacin (44.6%), gentamicin (2.7%) and tigecycline (0.5%), was also noted. A subset of 173 isolates was whole genome sequenced, and high carriage rates of qnrS1 (60/173) and bla CTX-M-15 (45/173) were observed, correlating with reduced susceptibility to the fluoroquinolones and third generation cephalosporins, respectively. This study is important because of the resistance patterns observed, the demonstrated utility in applying genomic-based approaches to routine microbiological monitoring, and the overall establishment of a transnational AMR surveillance framework focussed on coastal and marine environments

    A Sound Approach to Language Matters: In Honor of Ocke-Schwen Bohn

    Get PDF
    The contributions in this Festschrift were written by Ocke’s current and former PhD-students, colleagues and research collaborators. The Festschrift is divided into six sections, moving from the smallest building blocks of language, through gradually expanding objects of linguistic inquiry to the highest levels of description - all of which have formed a part of Ocke’s career, in connection with his teaching and/or his academic productions: “Segments”, “Perception of Accent”, “Between Sounds and Graphemes”, “Prosody”, “Morphology and Syntax” and “Second Language Acquisition”. Each one of these illustrates a sound approach to language matters

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents on Section 3 and reports on nineteen research projects.Defense Advanced Research Projects Agency Grant F49620-96-0126Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715Defense Advanced Research Projects Agency/National Center for Integrated Photonics TechnologyMultidisciplinary Research InitiativeU.S. Air Force - Office of Scientific ResearchNational Science Foundation/MRSECU.S. Navy - Office of Naval Research (MFEL) Contract N00014-91-J-1956National Institutes of Health Grant R01-EY11289U.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-0717Defense Advanced Research Projects Agency Contract N66001-96-C-863

    Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach

    Get PDF
    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246

    Get PDF
    Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature
    corecore